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Abstract. In the article a representation theorem for a management method of
a Pension Fund is proved. This method, called The Ezact Individual Trajectories
Method (EIT) previously introduced by one of the authors, has the peculiarity of
being set up on an axiomatic basis and it is an alternative to the already known
management methods of actuarial present value and of stochastic trajectories.

EIT is worked out on an individual basis which takes into account, for each
insured, the set of all possible future life events, called feasible trajectories.

The theorem we prove in this article enables us, through the representation
model, to identify directly the feasible trajectories without having to consider all
the potential ones, which would be numerically non-polynomial, that is beyond
control.

Mathematics Subject Classifications (2000). 91B99

1 Introduction

On an axiomatic basis we formalize a financial model for the management of an
Invalidity Old Age Survivor Pension Fund IOS (in Ttaly called IVS, Invalidita
Vecchiaia Superstiti) with a methodology which is alternative to those based on
actuarial present value and stochastic trajectories now in use.

It is an individually-based method which takes into account for each insured
“the set of all possible future life events” of his position, i.e. the feasible trajecto-
ries, formally expressed in terms of states/events. The space of states is provided
with a total ordering relative to their irreversible occurrence all through the in-
sured person’s life span. To each feasible trajectory in space, a single probability
in Markovian hypothesis is given (see [1], [10] and [11]).

The Exact Individual Trajectories Method takes into account the transfor-
mation of a feasible trajectory into the contribution/benefit vector in order to
assess, on an individual or collective basis, the insured person’s relative equilib-
rium premiums.

A three-dimensional model of feasible trajectories is also introduced and
through a representation theorem, a biunique correspondence of each feasible
trajectory with an integer co-ordinate point of the model in question is given.
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2 Preliminary statements: notation and
axiomatic basis

The Exact Individual Trajectories Method, which was previously presented in
its basic ideas in [2] and [3] and here is elaborated, is worked out starting from
the vital cycle of the insured person’s position, making use of the following
notation and axiomatic basis.

The condition of the insured person is defined through 5 states, each having
annual validity, based on the assumption that changes (in state) take place at
the beginning of the year. Let us consider the states space

S = {A; P, -Pse/oa Pou, E}

where:
A = active
P, = invalidity pension
Py /o = seniority and old age pension
P,, = survivor pension to be grouped in (according to the position of the
legal predecessor):
e Pind — indirect pension (received by the death of an active)
e P! = survivor invalidity pension
o P5¢/° = survivor seniority and old age pension
E = elimination of the insured person’s pension benefits.

In the space S let us consider the following ordering
ASPiSIDse/OSPsugEc

For each insured we shall use the following notation:

age in the year i =0

years of contribution in the year i = 0

old age pension initial year

age of retirement on the basis of working years

=min(X —z, H — h) : number of years needed to be entitled to old age
pension benefits in the year i = 0

w — 1: maximum reachable age.

N TR

To simplify the matter, suppose the maximum duration in the position, also
with the possible survivor pension, to coincide with the insured’s maximum life
span.

We define as trajectory (depending on context):

a) the vector of w—x+1 components where the i*" one, is the insured person’s
state in the condition of insured after i years;

or
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b) the function II(:) from the ordered set of natural numbers M : {0,1,2,...,
w — z} to the ordered set of states S, that’s the application linking each
year beginning from the present state which corresponds with i = 0, to
one of the five states.

We therefore give the following aziomatic basis Ag, for s = 1,...,5, for the
definition of feasible trajectories (to be intended as in b)):

Ay :i,5 € M and i <j=TI(3) <TI(j),
this axiom, therefore, provides a non-decreasing condition;
Ag i€ Mand T <i=1I(i) # A,
in other words, after T' or more years one can’t be in an active state;
Az:ie M and i <T = 1I(i) # Py,
i.e. it is not possible to be entitled to IOS benefits before T' years;
Ay 3 T1(0) = P = V5,5 >0 1I(j) # Pav,

that is from an invalidity pension one can’t step over to the condition of old age
pension;
As  TI(0) = A, M(w—2)=E,

specifically the first component of the vector corresponds to the active state and
the last to elimination state.

3 Representation theorem for feasible trajecto-
ries

Let us consider the set Q C R? formed by points P(z1, 22, 23) verifying the
following conditions (see also Figure 1):

I) »z; integer >0fori=1,2,3

a) nntzmtz<w—zax (1)
B) z21>2T —2=0

v) zg > 1.

Let’s link each point P(z1,292,23) € @ to a trajectory that is define an
application II[P(z1, 22, 23)](:) : M — S in the following way: using P(z1, 22, 23)
let’s divide the index set M = [0,1,...,w — ] into the disjoint set of the index
subsets My, for k =1,...,5, defined as follows (let’s take 1 < T < w — x):

Mlz{iGMIOSigzl/\(T—l)}
MQZ{ZEM21/\(T—1)<ZS21}
MgZ{iEM221<i§21+Z2} (2)
M4:{iEM221+Z2<i§21+22+23—1}
Ms={ieM:z1+20+23—1<i<w-—uz},
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where a A b = min{a, b}.
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Each feasible trajectory is in one-to-one correspondence with a point verifying
I,a, 3, representing its end component whose coordinates outline sequentially
the trajectory’s ‘segments’ (see also (1))

Figure 1: Space model of all feasible trajectories

Each index ¢ € M belongs necessarily to one and only one of the sets M.

REMARK 1 We notice that the index sets M; and Mj5 are necessarily the unique
non-empty, since index 0 € M; and index (w — z) € M5.

REMARK 2 We observe that My # () implies z; > T, that for 3 of (1) implies
2o = 0 that in its turn, equals M3 = ().

As aresult My # ) — M3 = () and in an equivalent way: Mz # () — Mo = ().
Consequently only one, at most, of the two index sets Mo and Ms linked to
point P(z1, 29, z3) can be non-empty.
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Let’s therefore link to point P(z1, 22, 23) € @ a trajectory, that is define an
application II[P(z1, 22, 23)](-) from M into the ordered space of states .S, in the
following way:

A for i € M,
Pse/o for i € M,
H[P(21, 22, 23)|()) = { B forie M; 3)

P, forie My
E  forie Ms.

Let’s prove the following

THEOREM The points of the set Q are in one-to-one correspondence with the
feasible trajectories, using the application defined by the relations (2) and (3).

Let’s first verify that the trajectory linked to each point of set Q by means
of relations (2) and (3) is actually feasible.

In fact if P(z1,22,23) € Q, then the corresponding application TI[P(z1, 22,
z3)](+) : M — S verifies the five axioms A, for s =1,...,5.

TEST OF AXIOM A;
Let us verify that, ¢ and j € M and i < j = II[P(z1, 22, 23)|(¢) < H[P(21, 22,
23)](3). In fact, following the definition of the sets My, for k = 1,...,5, we
observe that if ¢ and j belong to M and i < j, then i € M} and j € M}, imply
that k£ < h.

If i € My and j € My, for k < h, then considering Remark 2, indicating that
at most one of the two index sets My and M3 may result non empty, which on
the basis of the state set ordering and (3) implies that for ¢ < j we have

H[P(21’227Z3)](i) < H[P(ZlszaZ?))](j) U

TEST OF AXIOM A
Let’s verify that function II[P(z1, 22, 23)](-) : M — S defined by relations (2)
and (3) fulfils the axiom A, that is:

i€ M and T <i= I[P(z1, 22, 23)](i) # A.

Hence we have:
aNT-1)<T-1,

from which by T' < i we get
aNT-1)<T-1<T<i
and as a consequence we obtain

2 AT —1) <i.
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The latter by (2) implies ¢ ¢ M, therefore also II[P(z1, 22, 23)] (%) # A. O

TEST OF AXIOM Ajz
We verity that, if i € M and ¢ < T', then

H[P(Zla 22, 23)](2) 7é -Pse/o-

We observe that II[P(z1, 22, 23)](i) = Pse/o if and only if i € M, and that M»
proves non-empty if and only if z; > 7.

In the latter case I1[P(z1, 22, 23)](i) = Pse/o if and only if the condition

T-1<1<2z

holds (notice that z; A (T —1) =T —1).

When ¢ € M the above condition is equivalent to
As a result we have

H[P(21722723)](i) = -Pse/o ST <i<z,

consequently, if i < 7" then II[P(z1, 22, 23)](i) = Pse/o cannot take place.
In other words, the insured person can’t be entitled to OAP benefits before
T years have elapsed.

TEST OF AXIOM A4
We verify that

Ji € M : [P (21,22, 23)](i) = B = Vj, j > i, T[P(21, 22, 23)](J) # Preso-

To this it suffices to observe that, given an index i € M with II[P(z1, 22, 23)] (i) =
P,, the index set M3 is proved non-empty and so, on the basis of Remark 2, the
index set M, is empty. O

TEST OF AXIOM Aj
We have to check that

M[P(z1, 22, 23)](0) = A and II[P(z1, 22, 23)](w — 2) = E.
It is enough to see that for any choice of point P(z1, 22, 23) € @ on the basis of
the definitions (2) of the index sets M; and M5, we have
0€ M; and (w—z) € Ms.
Hence, on the basis of (3) we have
M[P(z1, 22, 23)](0) = A and II[P(z1, 22, 23)](w — 2) = E. O

We have therefore proved that given a point P € Q, the trajectory linked to it
by means of definitions (2) and (3) is feasible, in other terms, it verifies the
arioms Ag, for s=1,...,5.

Let us now prove that the relations (2) and (3) define an injective and
surjective (i.e. biunique) applications between sets Q and T'4 (the sets of feasible
trajectories).
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4 Application injectivity test

Let us take two distinct points P(z1, 22, z3) and P’(z{, 25, z4) belonging to Q.
We must prove that the two feasible trajectories linked with them by the
defining relations (2) and (3), are different.
With respect to P(z1, 22, 23) we observe that

[O Zl] = Ml V) M2 = (H[ (217 22, 23)] ! Av Pse/o)

)~
(Z zZ1 +22] = M3 = (H[P(ZlaZQa )]) 1('P1)
(21 + 22,21 + 22 + 23 — 1] = My = (I[[P(21, 22, 23)]) " (Psu)
(214 22 + 23 — L,w — 2] = M5 = (I[P (21, 22, 23)]) 1 (E).

(4)

We indicated as first member of relations (4) within brackets a few natural
number intervals that may or may not include the corresponding last term,
depending on whether the bracket is square or round. In a parallel way as to
point P’(z1, 25, z4) we have

[0, 21] = Mj U Mj = (I[P’ (21, 25, 23)]) (A, Pec/o)

(21,21 + 23] = M3 = (H[P'(2, 25, 23)]) 1 (P})

(21 + 25, 21 + 25 + 25 — 1] = My = ([P’ (21, 25, 23)]) " (Pou)
(2 + 25+ 25 — Liw —a] = Mg = (I[P’ (21, 25, 23)]) " (E).

We have indicated with an apex the sets defined by relations (2) as to point
P/(Zlv Z2a 23)

It follows that, if the two points P(z1, za,23) and P’(z], 24, z5) differ on
account of the first component, z; # 2}, then by (4) and (4’) the two feasible
trajectories differ from each other in the components relative to the set of the
two states A and P/, and they are, therefore, different.

If instead, the two points differ in the second component, that is zo # 25,
then the two feasible trajectories differ in the components corresponding to the
state P;: the ‘length span’ of the two sets M3 and M} is different, therefore
Ms # M} (including also the case when, for one of the two trajectories, the set
in question is empty, which occurs if the second component of the corresponding
point is 0).

Finally, if the two points differ in the third component, that is z3 # 24, then
the two feasible trajectories differ in the components corresponding to Ps: the
‘length span’ of the two sets My and M} is different, therefore My # M) (also
when, due to one of the two trajectories the set in question is empty, which
occurs if the corresponding point has the third component (> 1 for v of (1))
exactly equal to 1).

5 Application surjectivity test

Now we prove that the application II[P] : @ — T (set of feasible trajectories)
defined by relations (2) and (3) is surjective.
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Let us consider a feasible trajectory, that is an application II(-) : M — S
verifying axioms Ay, for s = 1,...,5 and prove that it issues from a point
P(z1,22,23) € Q by applying the relations (2) and (3).

We link the index sets corresponding to each state in view of application
I1(-). We then have:

Ny ={ie M:II(i) = A}

Ny ={i€ M:11(i) = Pe/o}

Ny = {i € M :11(i) = P} (5)
Ny ={ie M :1I(i) = Ps,}

Ns = {ie M:1I(i) = E).

We proceed by furtherly assessing the following values z7, 29, z3 connected with
the feasible trajectory II(-):

Z1 = max 1
1€EN1UN>2
) — if N 0
= B i No ©)
0 if N3=10

z3 =1y — (21 + 22),

where i, is the index corresponding to the last component of the feasible trajec-
tory, that is the first moment where state E occurs.
We want to prove that:

a) the following sets of equalities hold:

Ni={ieM:0<i<zA[-1)}
No={ieM:z1AN(T—-1)<i<z}
={ieM:z1<i<z+ 2} (7
Noy={ieM:z1+2z<i<z+22+23—1}
Ns={ieM:z1+20+23—1<i<w-—zx}

b) point P(z1, 22, 23), the coordinates of which are defined by the relations
(5) and (6), belongs to the set Q.

If using (5) and (6), we apply the application defined by the relation (2) and
(3) to the point P(z1, 22, 23) linked with the feasible trajectory II(-), we obtain
again the feasible trajectory II[P(z1, 22, 23)()]-

We have thus proved that the feasible trajectory II(-) is obtained by means
of the application qualified by the relations (2) and (3), from P(z1, 22, 23) € Q,
whose coordinates are defined starting from II(-), using relations (5) and (6).

If we prove that a) and b) are true, we have also proved that the application
II(P) : @ — Ty is surjective and, besides, that the application defined by means
of (5) and (6) from Ty to @ is the inverse of the application II(P) : Q — T
defined by the relations (2) and (3).
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Let us prove that a) and b) are true.

Proof of a) Let us consider a feasible trajectory, that is an application II(-) :
M — S verifying the axioms A for s = 1,...,5. We start with

Observation 1 Generally, the sets Ni, k= 1,...,5, if not empty (under axiom
As only the sets N1 and N5 are certainly such), are intervals of natural
numbers, which may contain one single point. As a matter of fact, due to
axiom Aj, we have:

if i,j € M and i < j and TI(i) = T1(j)
then TI(¢) =TI(k) = (j) for ke M i <k <}.

As a result, for each Ng, k=1,...,5, (non-empty) and for i € M, i € N,
if and only if

min ¢ <4 < max1 (8)
iEN}, iENy

Observation 2 Owing to the options of axioms A; and Ay, N3 # ) = Ny = (),
or equivalently Ny # () = N3 = (), that is at most one of the two sets No
and N3 may result non-empty.

Given the feasible trajectory II(-) : M — S, we verify that equalities (7)
are applicable, and we specifically start by proving that the set Ny = {i €
M : TI(i) = A} equals the set {i € M : 0 < i < 2 A (T — 1)}, with z;
defined in (6).

Set NNV is non-empty because 0 € N; with 0 = min ¢ and therefore by

1€ENy
Observation 1, for i € M, wehave i € N1 & 0<i < IIGI%Xi.
1€N]
Now we verify that
maxi = z1 A (T —1). (9)

1€EN7
Let’s consider the two possible cases:
(i) 21 <(T'—1).
Then due to Axiom As, it follows that No = (), therefore:

21AN(T—1) =2 = max i=maxi,
i€N1UNz €N,

i.e. (9) is true.

(i) 2 > 7.

Then, by axiom A, we have Ny # (). Hence, according to Observation 2,
we get N3 # (), i.e. the state P “included” in the state ordering between
A and Py, is not taken by the trajectory II(-).
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Since Ny # () and A; holds, we obtain

max? < max ¢ = max?t= z1.
1€ENy 1€EN1UN>2 1€ENo

Then by axiom As

maxi < T — 1.
i€ Ny

Therefore:

maxi <T—1< z. (10)
1€N1

Now if we had

max:i < T —1
1€ N1

then an index ¢ would exist, with ¢ < T'— 1, such that II(¢) = Pi/, (in the
interval [0, 2] only the states A and P/, are taken), in contradiction with
axiom As.

Therefore maxi =7 — 1 and by (10), it follows that

1€EN1

maxi = z; A (T — 1),
1EN,
i.e. (9) holds.
Therefore, if z; > T, the following inequalities are true

O=mini<maxi=2z A(T—1) < mini < max 4 =maxi= 2.
1€N1 1€N1 1€N2 1€EN1UN2 1€N2

As a result, the interval of natural numbers [0, z;] contains the two intervals
which coincide with N7 and Ny (Observation 1) defined in terms of the states
A and Py /,, respectively, i.e.

1EN,

N1={iEM:0<i<maXi:zl/\(T—1)},

No=<1€eM mini<:< max ¢=max?=21 .
1€ No 1€EN1UN3 1€No

Considering that the state I, located between A and P/, is not taken by the
trajectory and by axiom Aj, only the states A and P/, can be taken in the
interval [0, 1], consequently:

min ¢ = | maxz? | + 1.
1€ Ny 1€N1

Therefore Ny, that is the interval defined by state P/, can be formulated as

Ng:{iEM:zl/\(T—l):mjavxi<i§zl}, (11)
1ENy
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and the interval [0, z1] is split into the two disjoint intervals

Ni={ieM:0<i<z A(T—1)} relative to state 4,
No={ie€ M: 2z AN(T —1) <i< 2} relative to state Py ,.

As to the second equality (7) we observe that Ny # 0 if and only if z; >
T. Therefore, following the reasoning of (ii), the set Na, being an interval
(see Observation 1) can be written in the form (11), i.e., the latter of the two
considered equalities of (7) is true.
As for the set N3, if it’s not empty, then it is an interval, i.e. for i € M we
have
1€ N3 < min¢ <4 < maxi. (12)
i€N3 i€ENs
For Jgjl\p i, by Observation 2 we can see that the following sequence of implica-
3

tions and equivalences is true:
N3#®:>N2:@<:>21ST—1<:>21221/\(T—1) (13)
and consequently

N: >zn=xa0NT-1)= .

3F#0=z21=21 /N ( ) maxi

By axiom A; and the state ordering, the interval N3, defined by the state P,
follows immediately the interval N; defined by the state A and hence by (13),
we get:

min i = (maxi) +l=uAT-1)+1=2z+1
€N iEN,

By N3 # (), from relation (6) we also have

| = . 14
max s 21+ 22 (14)

Hence for all i € M, we obtain
1 € N3 & 21 <1< 21+ 29,

that is, the third equality in (7) holds.
Concerning set Ny, if non-empty, it must be an interval (as already noticed),
i.e. for all i € M we have:

1 € Ny < mini <17 < maxzq.
i€Ny 1€Ny
By axiom A; and the states ordering, interval V4 follows one of the two intervals
N or Nj (if one of the two is non-empty) otherwise N, is next to interval Nj.
We observe that z; + 2o in any case represents the right end point of the
interval in question, either in the case it is equal to Ny or N3 (if both Ny and
N3 are empty), or when it is equal to Nj.
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In fact, if interval N> is non-empty, N3 must be empty, and we have z, = 0,
therefore 21 + 2o = 21 which is the right end point of the interval N» (see the
second relation of (7)).

If instead, N3 is non-empty (implying N5 is empty), it follows (see (14)) that
21 + 22 is the right end point of N3. In case both Ny and N3 are empty, we have

21 = maxi and z3 = 0 (see (6)).

Therefore 21 + 2z, = m%xi that is z; + 22 is the right end of interval Ny,
1€N1

implying mjl\?z =z1+ 22+ 1.
1€ENy
From axiom Aj, due to the ordering of the states set S and the third relation
in (6), it follows:
maxi=14; — 1 =21+ 20 + 23 — 1.
1€Ny

Therefore, for i € M we have
1EN & 21 +220<i<21+204+23—1,

i.e. the fourth of the equalities (7) holds.

As to the fifth and last of the equalities (7), we observe the following: since
i1 is the first component of trajectory II(-) where the state E occurs, from axiom
Ay, and taking into account the ordering set S, the state in question is present
in all subsequent components of the trajectory. Ns (which is non-empty by
(w — ) € Nj, resulting from Aj) is therefore the interval of all ¢ € M, such
that:

21+tz+tz3—1<z14+220+2z3=1: <1< w—2x. O

Test of b) We verify that point P(z1, 22, z3), defined by the relations (5) and (6)
belongs to set Q.
Let us check I) of (1).
Indeed, for i = 1,2,3, 21 is a non-negative integer, that’s I) of (1) holds.
Obviously z; > 0. For zo we have that either it is 0, if the set N3 proves

empty, or in the case the latter is non-empty, it follows that z, = zrel%}gu — 21-

If the set N3 is non-empty, then the set N5 is empty by axioms A; and As,

therefore z; = maxi. As a result we have zo = maxi — maxi which, again by
i€EN, i€N3 i€EN,

axiom Ajp, considering the ordering in .S, implies z; > 0.
As to z3, we observe that

Z3=it—21, ingZQ
and

23 = it — maxi, if N3 74 @
1€N3

From axiom A;, considering that i, is the first component of the trajectory in
which state E, the last one of all 5 states is present, it follows z3 > 1, i. e. also
~) of (1) holds.

Now we verify a) of (1).
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Since i; < w — x, owing to the third relation of (6), we have z1 + 23 + 23 =
it <w —x,ie. a) of (1) fulfils.
Finally let’s verify f3) of (1).

If z1 > T, then by axiom A, and the state ordering we have z; = m%xi im-
1€N2

plying Ny # (), and therefore (see Observation 2), N3 = () and as a consequence
Z9 = 0.
As aresult 21 > T = 20 =0, i.e. ) of (1) is also valid. O

6 Conclusion

The axiomatic basis which, as already mentioned, is the peculiarity of the for-
malization by EIT method, represents a specific feature which has relevance not
only for the formal transparency of this method, but because it is also an in-
strument of control as well as coherency of the method itself, which has proved
essential in the applications.

We have in fact verified in an operative way the real importance of the
representation theorem in some actuarial studies of the forecasting type.

The representation model enables us to identify immediately the feasible tra-
jectories without having to consider all the potential ones, numerically beyond
control, by eliminating the non-feasible ones.

With the mathematical model considered in this paper, we have worked out
an 80 years’ estimate technique balance sheet for some Italian Social Security
Insurance Fund Organisations for each Professional Category (called in Italy
Casse di Previdenza dei Liberi Professionisti).

These actuarial projections have allowed in some cases to estimate and carry
out a Reform of the Social Security System of the above mentioned organisations
of professionals.

By the classical methods either of the collective type like subdivided in groups
collectivities (see [14] and [15]) and multistate models (see [1], [10], [11] and [17])
or of the individual type like actuarial present value (see [5], [9], [12], [16] and
[17]) and stochastic trajectories (see [4], [6], [7], [8], [13], [16], [17] and [18]),
an 80 years’ projection would be extremely onerous because as to stochastic
trajectories, serious difficulties may arise due both to the lack of analytical
solutions relative to the structure and to the necessity to assess sensitivity via
evidence.

Consequently, by the Exact Individual Trajectories Method we succeed in
working out non - stochastically generated trajectories, in making a control by
the axiomatic basis, thus restricting the probabilistic asset to the evaluation of
the single trajectory probabilities and obtaining the problem’s structure with an
extremely reduced computation complexity, which permits us to single out all
the possible life events conciliating methodological rigour, formal transparency
and didactic simplicity.
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